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A chain copolymerization of macromonomers generates branched polymers with comb structure. This work 
presents analytical expressions to predict the bivariate distributions of molecular weight and branching density for 
the comb polymers. The macromonomers are assumed to have a random or uniform distribution. The distribution 
functions are determined by the average number of branching points per backbone chain and the ratio of the 
average lengths of backbone and side chains. The model is applicable for short-chain, long-chain, and star-shaped 
comb branching. © 1998 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

Branched polymers exhibit many special functions in 
12 various appl ica t ions ' .  Theoretical prediction of the 

bivariate distribution of molecular weight and branching 
density for branched polymers provides a great challenge 
for polymer scientists. Numerous theories have been 
derived to describe the distribution for polymers formed 
via various mechanisms 3-2°. However, most work focused 
on average molecular weights. There are only a few papers 
dealing with analytical distribution functions. For example, 
Flory presented a model for monodispersed chains cross- 
linked by divinyl comonomer 3. StockmaY4er generalized the 
model for an arbitrary chain distribution. Beasley gave an 
expression for branched polymers formed by chain transfer 
to polymer in free radical poll(merization carried out in a 
continuous stirred tank reactor s. Bamford and Tompa dealt 
with the same polymerization system in a batch reactor at 
low monomer conversion 6. The early works were sum- 
marized by Peebles ~z. Recently, Tobita proposed the 
concept of random sampling technique and obtained an 
analytical equation for homogeneously branched polymers 
with randomly distributed primary chains 2~'22. Soares and 
Hamielec derived a distribution function for metallocene 
polymerization with terminal branching 23. These models 
dealt exclusively with the polymerization systems having 
branches generated by chain transfer to polymer and/or 
propagation with pendant or terminal double bonds. 

Branched polymer assumes various molecular structures 
including dendritic, comb, and star-shaped branching. A 
dendritic polymer has a chain structure of branches-on- 
branches. A comb polymer has a backbone attached with 
side chains. A star polymer is a cluster of linear chains with 
one end of each chain chemically bound to a common 

* To whom correspondence should be addressed 

central moiety. Material properties of the branched poly- 
mers depend not only on molecular weight and branching 
density, but also on the structure. A dendritic polymer 
behaves very differently from its comb and star counterparts 
even with a same average molecular weight and branching 
density. Compared to the dendritic branching on which all 
the aforementioned models 3-23 were based, modelling of 
branched polymers with comb and star structures has 
received less attention. In a previous paper 24, we derived a 
distribution function for a binary metallocene system with 
one catalyst generating polymer chains by /3-hydride 
elimination and the other propagating in situ with terminal 
double bonds. It was found that the comb polymers thus 
produced give much narrower molecular weight distribu- 
tions than dendritic polymers with same branching densities 
synthesized by a single catalyst system. The former shows a 
rather sharp truncation at the high molecular weight end, 
while the latter has a long skew tail which may cause 
difficulty in processing. In this work, we present a model 
generally applicable to various types of comb polymers 
synthesized via chain polymerization with macromonomers, 
including long-chain, short-chain and star-shaped branching 
as shown in Figure 1. 

CHAIN POLYMERIZATION WITH 
MACROMONOMER 

The polymerization system consists of initiation or activa- 
tion of a reactive centre, propagation of monomers, and 
chain termination 25-3°. The propagation is the major step 
which generates a backbone bearing side chains introduced 
by copolymerizing macromonomers. The elementary 
reactions and their rate constants are as follows 

P*,b, 1 - [ - M  ~ P * +  l,b, 1 
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A, Short-chain branching (SCB): 
0 >> 1 

r-rT-rr-rrr 
B, Long-chain h r a n e h i n g  (LCB): 

0 - I 

( ' ,  Star-shaped polymer: 
0 < <  1 

Figure 1 Schematic representation of comb-branched polymers Iorrned 
by chain polymerization with macromonomer. 0 is the ratio of average 
lengths of backbone and side (macromonomer) chains. Shown arc (A) 
short-chain branching (0 > > 1 ), (B) long chain branching (0~ I ), and (C) 
star-shaped branching (0 < I ) 

P;7. j,. I + M ?  ~'~ P,. .... /,+ 1.2 (1) 

P~:.f,,e + M ~  P~I: ,.t,., 

P~./,.2 + M,-- -:z; P,-+,.f, + 1.2 

where P,.:,.~* is the propagating polymer chain having r 
monomeric units and b branching points with the propa- 
gating centre indicated by the superscript * located at the 
monomer i (1 is the monomer M and 2 the macromonomer 
M~- with s monomeric units). In most cases of chain 
copolymerization with macromonomer, the molar concen- 
tration of macromonomer, E~IM.7, is much lower than that 
of monomer M due to its high molecular weight. Also, the 

. . . .  "~5 26 
reactwlty ratio r~ ( = k~,22/k~,2~) is very small-" 

M,Y/M < < 1 and r2~0 (2) 

Applying a mass balance to the polymer species P,.,,.j* with 
the steady-state hypothesis yields 

dP~. t,. 1 * * 
dt =kpjlMP,.-i,1,.i +kp2jMP,- 1./,,2 

(3) 

- kpliM+kl,12 M~ +rj P~.t,.I ~0 
~ , ~  ] 

The first two terms on the right-hand side are the generation 
rates while the other with negative sign are the consumption 
with r~ representing termination (note: the bimolecular com- 
bination of polymer chains is excluded in this work). A similaJ 
equation can also be written for P,.j,.,*. However. with the 
conditions given in equation (2), the concentration of the 
propagating chains with active centres on macromonomer 
units becomes negligible. It can therefore be simplified as 

i - - - 2  

kl ,21MP; i,t,,2=k1,t2 ~ P]I.. ~ ,,j,_I.IM.,=: (41 

For the same reason, one only needs to solve for P,.~, ~*. 

Substituting equation (4) into equation (3) gives the 
tbllowing governing equation in an integral-differential 
form. 

dn"(r,b)d~ - +  (PN.B- - I + ) t ) n *  ( r , b )  

(5) 

= X  - s , b -  l)ng(S) ds 

where n*(r,b) is the number traction of polymers having r 
monomeric units and b branching points, nM(s) is the num- 
ber fraction of macromonomers having s monomeric units, 

,,'(r,b)=P;.,,.l/ Z ~ P;~.l,., and nM(S)=Mg/ M; 
h = 0  r - -  I s =  I 

(6) 

0N.r~ is the nmnber-average length (number of monomeric 
units) of backbone chains, and X is the branching density 
(number of branching points per monomeric unit on 
backbone), 

ON, U = @f IM/rl (7) 
z cc 

X = d  ~ M ? / d M =  'ff~ M,F/(r,M) (8) 
v= I ~= I 

and r~ is the reactivity ratio k~,~ i/kpl2 . The number of mono- 
meric unit r in equation (53 is treated as a continuous 
variable due to its huge value. Another assumption is the 
similarity of the monomeric units on backbone and side 
chains. The model derived in this paper is therefore applic- 
able to homopolymer systems. The boundary conditions are 

n*(0,0) = [~NIB and n*(O,b) = 0  (9) 

For polymers without branching, the right-hand side of 
equation (5) is zero. Solving the equation with the condition 
given in equation (9) yields 

n ( r ,  0 ) = -  ' [ ( -  ' ) ] (10) * PN, B exp -- PN, B + )k r 

The backbone chains (X = 0 in equation (10)) in this work 
h)llows Flory's most probable distribution, i.e. random dis- 
tribution. The total number fraction of linear polymers is 

f~n , ( r ,  0 ) 1 d r =  1 + )k P N,  B (11) 

The bivariate function n*(r,b) is the most informative 
molecular quality. Other distribution and average properties 
can be readily obtained. The total distributions of polymers 
having r monomeric units and b branching points are 

n * ( r ) :  Z n*(r,b), n*(b)= n*(r,b) dr (12) 
0 h = 0  

The number- and weight-average molecular weights of 
polymers having b branching points and their total averages 
are 

PNA~- = . 0 rn*(r,b) dr, Ow,t,= 

PW, h 
PDb, -- _ 

PN, h 

Ii=rZn*(r, b) dr 

f 
c c  

rn*(r,b) dr (13) 
0 
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i 
s 

f~  r2n * (r)dr  pw 
J 0  PN Jorn*(r) dr, a w = PDI = (14) = , 

o rn*(r) dr 
J 

Note that the term of molecular weight is used for the 
number of monomeric units in this work interchangeably 
with chain length or degree of polymerization. 

One advantage of using macromonomer for synthesizing 
of comb-branched polymers is that the side chains are well 
defined with a known molecular weight distribution riM(S). 
Most macromonomers are produced by chain polymeriza- 
tion mechanisms. The distribution encountered is often 
either random or uniform. In this work, we solve both cases 
of the random and uniform distributed macromonomers. 

MACROMONOMER WITH RANDOM DISTRIBUTION 

Equation (15) gives the random distribution of side chains, 

riM(S) = If/lr~ 1 exp( -- s/1VIN) (15) 

where If/IN is the number-average molecular weight of 
macromonomers. Substituting equation (15) into equation 
(5) and after some lengthy but straight-forward algebra, one 
obtains the following analytical solution in a series form. 

n*(3', b) = (hn0)b- 2b^ - (1 + ×B)~(b[b ' 2b + 1, (1 + XB - 0)3"] 
(2b)! l' c 

(16) 

where 'lKm,n,z) is a degenerate hypergeometric function 
which is defined as 

rn z m(m + 1) z 2 
• (m,n,z)= 1 + n ~ . +  n(n+ 1~--~ 2! 

(17) 
m(m + 1)(m + 2) z 3 

+ + . . .  
n(n+ l ) (n+2)  3! 

0 is the length ratio of backbone over side chains, ha is the 
number of branching points per backbone, and 3, is the 
reduced molecular weight. 

0 = PN, B]IQIN, )k B -~- )kPN, b, 3' = rtrPN, B (18) 

Note that for simplicity, the distribution functions below are 
expressed in reduced forms, which are all normalized 
accordingly. 

n*(3",b)=n*(r,b)(dr/d3")=n*(r,b) × aN, B (19) 

Substituting equation (16) into equations (13) and (14) gives 

PN, b _  l + ( l + / 3 ) b  Pw, b _  ( l + b ) [ 2 + ( l + / 3 ) Z b ]  

PN, B l + k u  ' aN, B ( l + X B ) [ l + ( l + / 3 ) b ] '  

(1 + b)[2 + (1 -~-/3)2b] 
PDI b = 

[1 --}- ( I  -[-/3)b] 2 

PN 0 + XB aw = 2 ka + (0 + kB) 2 

PN, B 0 ' PN, B 0(0 + XB) ' 

P D I = 2  [1 + (0 ~ B ) 2  ] 

where 

It should be pointed 

(20) 

(21) 

/3 = (1 + kB)/0 (22) 

out that our calculations using a 

comprehensive range of parameters show that while equa- 
tion (16) of this work is equivalent to equation (18) in a 
previous paper 24, equation (16) is much simpler in form. 

It is also clear that for a special case with XB = 0 - 1, the 
degenerate hypergeometric function equals unity and 
equation (16) thus becomes 

n*(3", b) ---- [0(0 - 1)] b 2b 
(2b)! 3' exp( - 03') (23) 

MACROMONOMER WITH UNIFORM DISTRIBUTION 

If the side chain possesses a uniform distribution, i.e. every 
macromonomer has equal molecular weight, 

nM(S ) = ~i(S --  ~/IN) (24) 

equation (5) has the solution of 

n*(3', b) = I[XB(3' - b/O)] b exp[1 - (1 + Xe)('r - b/O)] 

(25) 

Substituting equation (25) into equations (13) and (14) gives 

aN, b l + ( l + / 3 ) b  aw, b _  l + b + [ l + ( l + / 3 ) b ]  2 

PN, B I+XB ' PN, B (1 + ka)[1 + (1 +/3)b]' 

1 + b +  [1 +(1  +/3)b] 2 
PDIb = [1 + (1 +/3)b] 2 (26) 

a N 0 + kB Pw ka + 2(0 + ka) 2 

PN, B 0 PN, B 0(0 + XB) 

xB 
PDI = 2 + - -  

(0 + )kB) 2 

(27) 

DETERMINING PARAMETERS 

The distribution function in the reduced form n*(3",b) is 
determined by two parameters: the average number of 
branching points per backbone chain kB and the ratio of the 
average lengths of backbone and side chains 0. For n*(r,b), 
the number-average molecular weight of backbone PN, B is 
also required. However, PN, B can be approximated by 
polymerization data without macromonomer under the same 
conditions of reaction temperature and concentrations of 
initiator, transfer agent, and monomer. With a known IVI N, 
the ratio 0 is pre-determined. The branching density XB 
becomes the only variable during the copolymerization for 
the bivariate distribution. 

POLYDISPERSITY INDEXES 

Let us first examine the distribution polydisperties PDIb and 
PDI. For both cases in equations (20) and (26), PDIb is a 
monotonic decreasing function of b, from PDIb = 2 at b = 0 
to PDIb = 1 when b --~ ~, as shown in Figure 2. At low/3, 
i.e. the molecular weight of backbone is much higher than 
that of side chain, the distribution of side chains whether 
random or uniform does not have a significant effect on the 
relationship of PDIb versus b. At high /3 values, the 
difference becomes obvious, since the PDIb function of a 
uniform distribution of side chains decreases with 
increasing b much faster than that of a random distribution. 

The polydispersity of the total polymer population PDI is 
a function of both 0 and XB. At XB = 0, PDI = 2 representing 
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0 2 4 6 8 10 

Figure 2 Polydispersity of the comb polymers having b branching poims 
PDIe calculated using equation (20) and equation <26). Solid lines are fl = 1 
and dash lines [3 = 10. Squares are for random side chains and diamonds Ior 
uniform 

SHORT-CHAIN, LONG-CHAIN AND STAR-SHAPED 
BRANCHING 

Depending on the magnitude of the molecular weight ratio 
of backbone and side chains 0, the comb polymers can be 
divided into three categories as shown in Figure 1: 

1 
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/ t 
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-1.5 -1 ~).5 0 0.5 
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24 Figure 4 Molecular weight distribution of comb polymers having b 
branching points and the total distribution calculated using equation (16). 

~,~ Solid lines are n*(%b) with b = 0 2, 5, 10, 20, 30 and the dash line, n*(7). 
0 =  I ( l l l andXf~=5 

2.2 

2 
08 " 

0 6 

Figure 3 Polydispersity of total polymers PDI calculated using equalion 
(21) and equation (27). Solid lines are 0 = I and dash lines 0 = 2. Squares ~'~ o4 
are for random side chains and diamonds for uniform " 

the polydispersity of backbone chains. When XR --~ ~ i.e. ° I . I I , 1 0 1 
highly branched polymers, the polydispersity also 
approaches 2 independently of the relative magnitude of 
molecular weights of backbone and side chains and of the 
distribution type of  side chains. This is also the effect of the 
randomly distributed backbone chains. The number of  
branches on an individual comb polymer can be very 
different from each other following a random distribution. A 
characteristic of a PDI versus XB profile as shown in Figure 3 
is that the polydispersity increases with increasing branch- 
ing density at the beginning; and after reaching a maximum 
value, it decreases and finally approaches 2. The maximum 
polydispersity is a function of 0. For both random and 
uniform side chains, the maximum polydispersity occurs at 
XB = 0. 

PDlmax(X ~ = 0, random) = 2 + 0.5/0 (28) 

PDImax(XB = 0, uniform) = 2 + 0.25/0 

It can be seen that the polydispersities of comb-branched 
polymers are rather small. Indeed, the narrow molecular 
weight distribution is the most remarkable feature for 
comb polymers. It can also be noticed in the PDI versus 
XB profile that comb polymers with uniformly distributed 
side chains are narrower than those with random side 
chains. 

Logy 

Figure 5 Development of the total molecular weight distribution of short- 
chain comb-branched polymer calculated using equation (16) with 0 = 100 
and X~ - 0, 2, 5, and 10 (from left to right) 
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Figure 6 Molecular weight distribution of comb polymers having b 
branching points and the total distribution calculated using equation (16). 
Solid lines are n*(%b) with b = 0, l, 2, 3, 4, 5 and the dash line, n*('y). 
0 =  1 and XR : I 
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short-chain (0 > > 1), long-chain (0~1)  and star-shaped 
branching (0 < 1). A typical example of short-chain 
branching includes the copolymerization of ethylene and ~- 
olefins. Figure 4 shows the molecular weight distributions 
n*('y,b) for 0 = 100 with the side chains having a random 
distribution. Figure 5 illustrates the effect of the branching 

density on the total distribution n*(~/). Since the side chains 
are much smaller than the backbones, the short-chain 
branching does not significantly change the total molecular 
weight distributions. The situation can be very different in 
long-chain branching. Figures 6 and 7 give the distributions 
for 0 = 1. The branched polymers exhibit a bimodal pattern. 

I I I 

0~ 2 " 

\ - \  
l : l  /,:::::/\ , - ,  

j - -  ix:', 
-1 0 1 

Log'/ 

Figure 7 Development of the total molecular weight distribution of long- 
chain comb-branched polymer calculated using equation (16) with 0 = 1 
and ha = 0, l, 2, and 3 (left to right) 
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Figure  10 Molecular weight distribution of comb polymers having b 
branching points and the total distribution calculated using equation (25). 
Solid lines are n*(%b) with b = 0, 1, 2, 3, 4, 5 and the dash line, n*('7). 
0 =  1 and XB = 1 
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Figure 8 Molecular weight distribution of comb polymers having b 
branching points and the total distribution calculated using equation (16). 
Solid lines are n*(%b) with b = 0, l, 2, 5, 10, 20 and the dash line, n*(',/). 
0 = 0 , 1  and)xB = 5 
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Figure 9 Development of the total molecular weight distribution of star- 
shaped comb-branched polymer calculated using equation (16) with 0 -= 0.1 
and XB = 0, 3, 5, and 10 (left to right) 
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Figure 11 Development of the total molecular weight distribution of 
long-chain comb-branched polymer calculated using equation (25)with 
0 = 1 and ~B = 0 ,  1, 2, and 3 (left to right) 
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Figure  12 Molecular weight distribution of comb polymers having b 
branching points and the total distribution calculated using equation (25). 
Solid lines are n*(3',b) with b = 0, l, 2, 5, 10, 20 and the dash line, n*(y). 
0 = 0 . 1  and)xB = 5  
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This pattern becomes more obvious for a star-shaped comb 
polymer as shown in Figures 8 and 9 for 0 = 0.1, i.e. the 
side chain is ten times longer the backbone. Further 
reducing the 0 value would demonstrate that the contribu- 
tion of  backbone chains to the comb polymer molecular 
weight becomes negligible. 

Figure 10 presents the distributions for 0 = I with the 
side chains having a uniform distribution. The resolution of 
the polymers having different numbers of  branching points 
improves significantly compared to the case of random 
distribution as shown in Figure 6. Figure II depicts the 
effect of  the branching density on the total distribution. The 
numbers of branches can be readily counted in these 
distribution curves. The separation of peaks becomes even 
more obvious for star-shaped polymers having uniform side 
chains as shown in Figure 12 for 0 = 0.1. It should be 
pointed out that the use of the present model is limited by 
the conditions given in equation (2). These conditions could 
be easily satisfied in long-chain and star-shaped branching. 
However, for the case of  short-chain branching, it is 
applicable only for the conditions of  low comonomer levels. 

Another point worth mentioning is that the distribution 
functions presented in this paper are for the living polymer 
population, i.e. the polymer chains bearing propagating 
centres. These are therefore instantaneous molecular weight 
distributions. For corresponding cumulative distributions. 
the following mass balance equation for the dead polymer 
species P,.j, applies, 

dP"t' = rlPi.t,.i +r~P~/,.2 ~ rlPi'.j, i (29) 
~'P'"/'+ dt - " 

where ~" is the reactor mean residence time. In a steady-state 
continuous stirred tank reactor, the distributions of both 
living and dead polymers become identical, i.e. 

n(r, b) = n*(r, b) (30) 

Otherwise, an accumulation in terms of polymerization time 
is required, particularly in a batch reactor run for high 
monomer conversion. 
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